每日一题(11):证明数列发散

题:设 \(a_n = (1+\frac{1}{n}) sin \frac{n\pi}{2}\),证明数列 \(\{a_n\}\) 发散

心路历程:

1、对于一个数列,如果是收敛的,那么如果将这个数列按照一定的间隔抽取出各个数项、构成的“子数列”也是收敛、且各个子数列具有相同的收敛目标的;

2、反之,如果各个子数列中有任意一个子数列不收敛、或收敛目标与其它子数列具有不同的收敛值,那么原始数列就不是收敛的;

3、观察题目中的计算式,明显有一个正弦因子,随着数列的增长,这个正弦因子明显存在着周期性,因而可以从这个特点着手,尝试解决问题。

证明:

将原始数列分拆成四个子数列,如下:

第一象限数列:\(t^1_n = (1+\frac{1}{n}) sin \frac{n\pi}{2} , n=1,5,9,13\cdots\)

第二象限数列:\(t^2_n = (1+\frac{1}{n}) sin \frac{n\pi}{2}, n=2,6,10,14\cdots\)

第三象限数列:\(t^3_n = (1+\frac{1}{n}) sin \frac{n\pi}{2}, n=3,7,11,15\cdots\)

第四象限数列:\(t^4_n = (1+\frac{1}{n}) sin \frac{n\pi}{2}, n=4,8,12,16\cdots\)

以上分割出来的四组子数列,全部收敛于相同值才能充分确保原数列收敛;有任意一个数列与原始数列不同收敛、或有任意两个子数列彼此不同时收敛,则均可以证明原始数列不收敛。因而只需使用第一象限数列和第四现象数列即可解决问题:

第一象限数列:\(t^1_n = (1+\frac{1}{n}) sin \frac{n\pi}{2} = (1+\frac{1}{n})sin(\frac{1}{2}\pi + 2k\pi) , n=1,5,9,13\cdots\)

第四象限数列:\(t^4_n = (1+\frac{1}{n}) sin \frac{n\pi}{2} = (1+\frac{1}{n})sin(2k\pi), n=4,8,12,16\cdots\)

以上两个子数列,各自的正弦因子项,一个恒为1、另一个恒为0,因而可以分别进行简化,得到:

第一象限数列:\(t^1_n = (1+\frac{1}{n}) sin \frac{n\pi}{2} = (1+\frac{1}{n}) , n=1,5,9,13\cdots\)

第四象限数列:\(t^4_n = (1+\frac{1}{n}) sin \frac{n\pi}{2} = 0, n=4,8,12,16\cdots\)

这时只需再考虑第一象限数列的计算式是否与零相等,因为是“结论早在心中”,因而现在想的就是它一定不是零。稍微动笔计算一下:\(\lim_{n \to \infty} (1+\frac{1}{n}) = 1\)。

至此可见抽取出来的子数列已经呈现出了不同的收敛趋势,因而原数列不收敛。

当然还可以更大胆的幻想一下:虽然没有对四个子数列全部考察、也没有更详尽的推敲,但原数列大概应该不是发散的、只是没有明确的收敛点,而是在一个范围内反复横跳、不断震荡的。无论如何,已经证明原数列确定是不收敛的。

至此,依题目要求,证明完成。

Related Posts

每日一题(12):利用定义证明函数极限

题:利用极限定义证明 证明: 和前面若干道关于“数列的极限证明”有显著区别的是:1、这个极限是趋于定值,因而要使用 语言完成证明;2、这是一个函数极限证明、而不是数列极限证明。 1、对于 ,需总能找到 ,使得当 时,满足 2、对于 ,需总能找到 ,使得当 时,满足 3、想直接找到 并不容易,不妨先指定 且存在不等式关系 4、对上面的不等式进行化简:,最终得到不等式关系: 5、注意到第4步的结果中恰恰含有 这个自变量趋于极限距离表达,此时只要设 ,就可以找到 6、当 ,也就是 时,利用第4步的逆推,可以看出 是成立的,因而可以确定对于 都能找到明确的 可被找到并设定 7、至此,依据极限的定义,任由 被给出,总有…

每日一题(13)证明数列的极限不存在

题:证明 不存在 心路历程: 这道题目并不难得出结论,而且结论是十分显而易见的:因为含有周期函数在表达式中、而且周期函数本身是存在过零点的,因而计算结果也会是一个周期函数,虽然结果的摆幅不固定、但是结果的周期性是一定的、而且也是随着表达式中的过零点同频过零的,因而显然这个数列的极限并不固定、因而极限也就不存在。 但是这道题的困难在于:要将上面的想法转换成数学语言进行描述。 可以考虑从原有的自变量数列 中抽取出两个“子数列”,令这两个子数列恰恰分别是摆动极值和过零值,这样两个子数列各自由自己的“极限”、”恒等零“、”发散“等各自的表现,而两个子数列各自的”极限结果“并不统一,从而证明出原数列没有极限。 证明过程: 根据极限的定义,当 时,若极限值存在,则所有从 中抽取的子数列的极限值应相等。若存在子数列极限值不同,则原函数极限不存在。考虑到原始表达式中含有正弦因子,因而构造其特定的相位所形成的数列: 从 这个数轴数列中,抽取出两个子数列,分别是: 数列1:,当 时, 数列2:,当 时, 上述数列1和数列2,都是从原数轴上取得到的点,并且两个子数列并无交叉、重复取样,因而两个子数列可分别用于完成数列极限的推演。 之所以取上面的两个子数列,主要考虑的是正弦波形上这些特征点的结果可以是恒为0、或恒为1的,有助于更快的得到结果。也可以使用其他相位角构造数列,但是上述2个数列会令后面的计算与分析,更加简单。 设:,则可以将数列极限转换成等价的函数极限: 对于有: 对于有: 整理上面的分析,最终得到: 由于函数在上述两个不同的极限目标时得到的结果不相同,因而原始数列的极限收敛也不是唯一的,因而原始数列极限不存在,完成证明。

每日一题(14)利用极限运算法则求极限

题:设函数 ,计算 解: 这道题很简单,只要利用基本的运算法则一步步推导即可。 欲计算 因为 ,原式继续推导: 经过约分和展开,可以进行化简,得到最终的极限结果: 虽然上面的推导和计算看上去似乎是“顺理成章、自然而然”的,但是我还是有一点困惑:题目中还给出了关于的限定条件:,这个限定条件在上面的计算和推导过程中并没有用到,这显然是不正确、至少是不完善的。 所以我想还需要对这些限定条件推敲一下、它为什么会给出?要在那些推导细节处予以考虑?

每日一题(15)通过运算法则求极限

题:求极限 解: 1、题目中给出的计算式中含有两个算术级数表达式,但是因为形式上并不是计算通式,所以无法进行后续的推导,所以首先要先写成求和通式形式: 2、经过进一步的化简可以得到更简约的极限计算式: 3、至此会发现得到的极限计算是一个 形式,无法得到确切的结果。既然当前是 ,那么就设法令其计算因子的位置从分子调整到分母(或从分母调整到分子)上,看一看是否能有改善: 根号内计算式分子、分母同时乘以 4、至此发现调整之后依然是 的形式,并没有得到任何改善,因而上述思路并不顺利。重新观察上述推算,发现在第二步中,有毕达哥拉斯的味道,因而考虑分子、分母同时乘以一个共轭形式: 即: 5、再对分子、分母约分,即可得到 的极限形式,这个形式是有利于完成极限运算的: 至此,计算完成。 额外的,对于这个问题的图形,用sagemath绘制 进行观察,可以发现它的收敛非常快,当 时基本就已经逼近到收敛点附近了。

每日一题(16)求极限

题:求极限 心路历程: 1、这道题目乍看上去,直观的感觉结果是无穷大,但实际上计算得出的结果却是确定的、而并不是无穷大。至于为什么会有这种直觉与事实的偏差,要好好反思、总结一下; 2、题目中的极限是趋于“负无穷”的,这在实际计算、推导的时候需要注意。 解: 原式 = = = = = = 此时注意到 的取值是在负数、负无穷时刻的,因而有 继续推导 = = = = = = 这道题我之所以会觉得有些“不可思议”,是因为按照原式来看,其中只是两个多项式相加,并没有分数、即没有比值的概念,而结果的-50显然是一个“比值、比率”,因而可以断定原始的表达式含有着一个分数形式。虽然推导计算的时候的确构造出了这个分数,但是直观的想,却很难从原式中看出这个“分数”来。这是为什么呢? 实际带入了一些数据发现,我对“极限”的理解是存在误区的:极限并不一定是“比值”,上面结论的-50就不是比值,而是差值:是原始的计算式中两个计算项的差异比较: 虽然看上去是一个“加法”运算,但是因为 是在负数轴上移动,因而实际上是两个计算式的减法运算。换言之,上面的全部计算可以变换成如下的结论: ,也就是 和…

每日一题(17)求0/0型极限

题:求 心路历程: 这道题目的分子和分母在自变量趋于零时,同时趋于无穷小,因而无法利用运算法则直接完成推导与计算。考虑将分子或分母中的自变量约去,只保留分母或分子中的自变量。 然而直接进行约分并不可行,原因是分子中含有无理项,因而先尝试对分子进行有理化,看是否能够顺利将分子中的因数提取出来、从而与分母中形成公因数、完成约分操作,再进而观察后续计算是否能够得到简化。 解1: 1、首先对分子进行有里化: = = = = 2、经过一次分子有理化之后并没能得到公因数,但是显然的,分子只要再进行一次有理化就可以将分子中的根号消除了,所以不妨再继续进行分子有理化、以观察是否能够将问题简化: = = = 3、经过两次分子有理化之后,顺利的将分子中的根号消除,并且已经见到分子和分母存在着公因子,进行约分简化: = 4、此刻可以发现计算式已经不再是 类型,因而可以尝试进行极限运算: = = = = = = 至此,完成极限计算。 解2:使用洛必达法则 基于计算式推导进行极限的计算是比较劳累的事情,因为计算过程比较多、容易出错。相对简单的则是直接使用洛必达法则,也就是对分子和分母同时求导——分子、分母在逼近极限时,各自的收敛速度之比,与他们在逼近极限时,各自的速率变化之比,是相同的。…