每日一题(4):求分段函数的表达式

已知:\(g(x)=\{_{x+2, x>0}^{2-x,x \le0} , f(x)=\{_{-x, x \ge0}^{x^2,x <0}\),求\(g[f(x)]\)

解:

首先调整一下 \(g(x)\) 的参数形式:\(g(f(x)) = \{_{f(x)+2,f(x)>0}^{2-f(x),f(x) \le 0}\)

这个时候再观察 \(f(x)\) 的值域,可以看出来其中的平方一定是横大于零、负数结果则一定是小于等于零的,因而有:\(g(f(x)) = \{ _{f(x)+2 = x^2 + 2, f(x)>0, x < 0}^{2-f(x) = 2-(-x), f(x) \le 0, x \ge 0}\)。

最终得到 \(g(f(x)) = \{ _{x^2 + 2, x < 0}^{2+x, x \ge 0}\)。

这是一道考研题,主要考察将两个分段函数复合成一个复合函数的过程。自己试着做了一下,并没有什么特别的感觉和想法,所以解法也就中规中矩、与书上过程相同。

Related Posts

每日一题(5):求函数的反函数

题:已知函数 ,解此函数的反函数。 解: 考虑原函数表达式中含有平方差的味道,尝试使用共轭式进行化简: 至此发现无法完成化简,思路不正确。所以重新考虑如何求解。直接尝试对原式进行变换: 至此得到用完全用 的多项式对单独 的表达,因而解出了原函数的反函数:。 注意:得到的反函数可以进一步整理、化简,最终得到 。

每日一题(6):判断函数的单调性

题:判断函数 在区间 上的单调性。 解: 既然是判断、讨论函数的单调性,就不大可能只通过“画出”或“脑中能够想到”函数的图像来直接完成函数单调性的论述。况且,这道题之所以能够想到它的函数图像,是因为这个函数恰巧常见且简单。如果换做一个复杂的函数,就不能直给出图像了。因而这道题的解答还是要利用数学推导完成。 一、解答过程: 首先是在区间 上任意选择两个点,分别命名为 且 。之后尝试进行两个结果相减,判断结果的表达式 是否恒大或恒小。 上面构建出来的差式是无法完成结果正负判断的,只有利用余弦和差化积将它转换为乘积形式,才能够完成判断。 因而: 因为:,所以: 因为:,所以: 所以结果恒为负数,从而得出在制定区间上,题目中的函数为单调递减的。 二、额外说明: 其实在上面的解答过程中会发现,原始问题并没有得到解决,因为在上面的解答过程中,原始问题被新的子问题取代了,而新的子问题其实是在问为什么在这个区间上的正弦值始终是大于零的。但是这个子问题因为太基础,所以默认成“显然的”而无需进一步去说明了。 三、和差化积: 还有一个基础问题,如何完成的和差化积? 因为 相似的 然后就可以得到:

每日一题(7):证明函数为偶函数

题:设 的定义域为 ,且对 都有 ,且 。证明 为偶函数。 证明: 1、对于题目中给出的“函数约束等式”已知: 2、对其中的自变量 取其负数 ,带入可得新的约束等式: 3、对上述两个函数性质约束等式进行整理,并可观察出它们的左侧形式完全相同,所以右侧亦相等;经过联合、提取后可得: 4、又因 ,且常数2为正数,所以可以同时消去而不影响等式依旧成立、亦不会因消去公因子而引起符号变化。消去公因子之后即可得到 ; 5、对自变量名称进行变换,故有 ,得到函数 具有偶函数性质的明确表达,即: 满足偶函数的定义:。所以是偶函数,得证。

每日一题(8):求证函数的周期性

题:设 的图形关于 对称()。 求证: 是周期函数并求其周期。 求解:正道题目书上给出来的答案显然是存在缺陷的。如果仔细看书上的问题和答案,会发现它为了规避“缺陷”,在题目和答案上都留下了“小心思”。 题目中问的是“求其周期”,答案中给出来的是“这是一个周期”,都规避掉了“最小”这个说法。因为一旦说出来“最小”这个词,就要证明找到的周期T是最小的周期。但显然书上的答案中并没有提及“最小”,因而也就无需论证了。而它的答案之所以敢于忽视“最小”,恰恰是因为题目中也没有提及“最小”。 但是我觉得这样不好,所以还是对题目重新调整一下,调整之后:设 的图形关于 对称()。求证: 是周期函数并求其最小周期。 如此的话,整个题目要想完成解答,需要分成4部分:1、先搞清楚什么是“对称性”;2、然后证实函数是周期函数;3、找出周期函数的周期T;4、对T进行进一步的分析,证实T的确是函数的最小周期。 按照如上的思路,解答过程如下: 第一步、对称性 如果函数 关于 点对称,意味着函数满足:。 此时重新设自变量为 ,且,依然满足上述对称性关系式。即:。整理后得到 。 这样整理出来的关系式不够直观、不好,重新做上一步: 此时重新设自变量为 ,且,依然满足上述对称性关系式。即:。整理后得到 。 这样得到的函数的对称性可用于后面的推导,将原题目中的对称点带入,将函数对称性列出来备用: 关于点对称: 关于点对称:…

每日一题(9):极限的证明

题:证明 一、心路历程: 1、这道题因为是对 求证极限,因而要使用的是 语言,而不应使用 语言进行求证; 2、使用 语言进行极限证明的思路是:无论设定多么小的 ,都能找到一个明确的 边界,使得所有 时的 ,都能令它的计算结果与目标点的接近程度比设定出来的 还要短小、精进; 3、当如上的找寻可以成立时,意味着找寻总是能够成功,便可以声明 时,计算结果可以无限趋近到目标点。 二、证明过程: 1、对于任意指定的大于零的 ,是否能够确定可以有,使得对于所有 时的 ,都能令 ? 2、改用数学语言表述:,此时 还没有找到,问题就是要确定 是否可以被找到; 3、因为 时, 4、所以…

每日一题(10):极限证明一则

题:用 方法证明 心路历程: 1、首先,这道题目要求使用 语言及其思想,完成极限的证明。书上一直说的是 语言,我似乎一直喜欢称这个语言为 语言,但应该没有区别; 2、其次,题目中特意强调要使用 语言完成证明,这大概是在“暗示”给出的极限应该还有其他的方法进行证明么? 解1:使用 语言及思想完成证明 1、对于 ,欲找到 ,使得对于 ,可以令 2、 3、注意到 中分子与分母因子项数量相同,所以符号可以上下同时逐项抵消,所以绝对值符号可以去掉,即: 4、 5、注意到:,即: 6、将5的发现、带入到4的表达式中: 7、第6步实际上是找到了一个介于不等式之间的比较数,当M边界确定之后,中间数如果能够满足更小比较、那么比中间数还要苛刻的原始数就更能满足更小比较了; 8、所以通过基于第6步放大得到的“中间数”去确定 取值依据:; 9、可通过不等式 确定边界条件 10、至此可以知道,对于…