每日一题(17)求0/0型极限

题:求 心路历程: 这道题目的分子和分母在自变量趋于零时,同时趋于无穷小,因而无法利用运算法则直接完成推导与计算。考虑将分子或分母中的自变量约去,只保留分母或分子中的自变量。 然而直接进行约分并不可行,原因是分子中含有无理项,因而先尝试对分子进行有理化,看是否能够顺利将分子中的因数提取出来、从而与分母中形成公因数、完成约分操作,再进而观察后续计算是否能够得到简化。 解1: 1、首先对分子进行有里化: = = = = 2、经过一次分子有理化之后并没能得到公因数,但是显然的,分子只要再进行一次有理化就可以将分子中的根号消除了,所以不妨再继续进行分子有理化、以观察是否能够将问题简化: = = = 3、经过两次分子有理化之后,顺利的将分子中的根号消除,并且已经见到分子和分母存在着公因子,进行约分简化: = 4、此刻可以发现计算式已经不再是 类型,因而可以尝试进行极限运算: = = = = = = 至此,完成极限计算。 解2:使用洛必达法则 基于计算式推导进行极限的计算是比较劳累的事情,因为计算过程比较多、容易出错。相对简单的则是直接使用洛必达法则,也就是对分子和分母同时求导——分子、分母在逼近极限时,各自的收敛速度之比,与他们在逼近极限时,各自的速率变化之比,是相同的。…

每日一题(18)求8/8型极限

题:求 心路历程: 1、这道题并不是很好看出来究竟是不是 类型的极限,从直觉上总觉得分子并不会向着无穷位置行进。但是如果对分式进行展开,就能够比较容易的看出来这是 类型的了: 2、其实无所谓它是否是 类型,想对这道题进行计算,常规的路数都是一样的:设法将分子或分母中的根号消除掉,更为常规的,我依然考虑是将分子中的根号消除掉; 3、额外的,注意到题目中含有一个 因子项,这更令人联想到了 这种常见的极限形式,因而解题思路也是尽可能构造出这个形式的因子; 4、结合上面的思路,先尝试分子、分母同时乘以 以便构造出 因子尝试一下: 试解: 将原式 分子、分母同时乘以相同的 = = 如上的构造并没有使计算式有所简化,依然是 类型,根号没有被有效的消除、甚至引入了更多的根号变得更加复杂了。经过答案提示,正确的思路是分子、分母同时乘以相同的 ,于是按照提示再次尝试求解。 解: 将原式 分子、分母同时乘以相同的 = = 结合…