每日一题(21)求极限

题:求 心路历程: 首先最直观的,这道题中明显含有一些“算术级数的味道”,虽然因为分母的影响并不能直接形成求和级数,但仍然不影响给人的直观感受:。 而这个求和级数的显式表达式是 又恰与原题目中的各个独立计算项的分母同元同幂,所以便有了一个构造夹逼边界的思路。 解: 若将原题目中的各个独立计算项的分母全部调整成 ,则几乎所有计算项的分母都被放大了(只有最后一个表达式的分母没有被放大);反之、若将所有分母都更改成 ,则几乎所有的分母都被缩小了(仅第一项分母没有被缩小)。 因为分母被放大,意味着整个分式变小了;反之,分母如果被缩小,意味着整个分式被放大了,因而可以得出不等式: 有: 经过上述的边界膨胀,得到的左边界和右边界,虽然还看不出对解题有利的结论,但至少得到的两个边界是可以各自完成合并计算的,合并之后的分子拥有显式表达、且显式表达与分母同元同幂,至此不妨按照这个感觉继续往后推导: 左侧: 右侧: 对如上得到的两个表达式分别计算 时的极限,容易得到其极限结果均为 : 左侧: 左侧: 至此可依夹逼准则确定原题目问题的极限亦为 ,计算完成。

每日一题(22)利用单调有界定理求证极限

题: 设 (1)求证:数列 单调减少且有下界 (2)求 预备知识: 这道题中隐含着一个预备知识:算数-几何平均不等式(Arithmetic-Geometric Mean Inequality),简称AM-GM不等式。这个不等式的通式,是对于非负实数 ,有着AM-GM关系: AM-GM不等式: 题目中用到的是AM-GM不等式是当 时的特例: 对于AM-GM的通式推导我还没有掌握,但是对于如上的特例推导并不难,可以利用毕达哥拉斯公式完成证明。无论如何,这个AM-GM的预备知识暂时认为是已经掌握了的,由此基础,进行题目的解答。 解: 第一步:首先确定数列是有界、有下届的: 因为:,所以通过计算得出,但并不能因此就说。因而这里要使用数学归纳法进行证明: 1、当 时,显然 成立; 2、假设 ,证明 : 显然成立,得到证明; 3、由数学归纳法可知 成立。 通过数学归纳法完成…

每日一题(23)利用数学归纳法求数列极限

题:设 ,,证明数列 有极限,并求此极限。 心路历程: 这道题不妨先“本末倒置”的思考:首先假设数列有极限,能否直接计算出极限来呢?显然如果数列有极限,那么这个极限将是非常容易计算出来的: 设: 那么显然 ,同时 于是可以得到 ,只要求解就可以得到 和 ,只要再稍作推敲既可以舍弃其中一个根,最终得到极限是 然而事实上,如上的“心路历程”是建立在“数列有极限”的前提假设基础上的。如果数列本身就没有极限,那么上述一切论断,都不能成立。所以这道题实际上就是在问数列是否存在明确的极限。 要想确凿数列存在明确的极限,就是要确定数列的单调性和有界性。如果数列单调、有界,那么就意味着数列存在极限。所以这道题的解答思路分成三步:1、证明数列单调;2、证明数列有界;3、确定单调有界之后可生成数列存在极限 ,然后构建方程式求解极限值。 解答: 第一步、证明数列单调: 使用数学归纳法完成这一步的论证,数学归纳法又是分成3步:1、起点成立;2、假设任意 步成立;3、证明 步成立。 1、起点成立: 因为 ,可见 ,至此如果说数列是递减数列,显然起点成立; 2、假设成立: 设 时的…