RC震荡电路学习笔记(6)
一、之前的学习笔记整理: 学习笔记 内容简述及收获心得 RC振荡电路初学笔记(1) 关于Jack·Kilby发明集成电路,并且这个电路是RC相移震荡电路的引子 RC振荡电路初学笔记(2) 关于Jack·Kilby发明集成电路的历史趣闻 RC振荡电路初学笔记(3) 罗列了几点RC相移电路中的个人困惑和备忘 RC振荡电路初学笔记(4) 对Jack·Kilby为什么使用PNP而非NPN做震荡电路做了些毫无根据的猜测 RC振荡电路初学笔记(5) 通过仿真软件对RC电路具体参数确定时的正确输出频率做了仿真 RC相移震荡电路学习历史笔记列表 二、电容电流超前于电容电压的原因: 书上的解释是:只有对电容器充电之后,电容器内部有了电荷,电容器两端才有电压,所以流过电容器的电流是超前于电压的。如上的这个表述我是万分的无法理解和接受,电流和电压是同时产生的,怎么可能有谁超前、谁滞后的说法呢? 在物理世界中,电压与电流应该就是彼此同时产生、同时消失的,不会有电流超前于电压的“预知”能力(如果特别特别较真儿、我觉得也应该是先有电压才能驱动产生电流,但他们二者的因果时序近乎于瞬时,所以不能用可评估的时间去表述谁先谁后。所以无论如何也没有道理说出电流超前于电压这种话来)。更准确的表述应该是:电容器上的电压变化率引起了电容器上的电流产生,而电容器上的电压波形与电流波形在同个坐标系上比较,是相同的正弦波形,但相差着90°的相位差。 以最简单的一个理想电容器举例,图样就是一颗电容器画在纸面上: 这个时候电容器内部无论带有多少电荷,它的电荷量都不会随着时间发生变化,因而电容器上不会产生电流。当外部向电容器输入电荷、或者电容器向外部输出电荷时,随着电荷的增加或减小,电容器上同时的表现出了电压的波动和电流的产生。 因为电容器的电流 所以电流的波动和电压的波动是同时因为电荷的增减而同时引起的。 而又依然是通过上式可以看出来:在外部存在一个正弦电压施压在电容器上时,电容电压的变化频率就是电源电压的变化频率,所以电容电压 电容电流 此时就能看出来电容上的电压与电流相差90°的关系来了。 额外的,还可以用另一个更简单的解释来说明二者存在着90°的相位差。依然是通过观察电容器的电流 。能够想到的是其中的电压V是个正弦波形态,那么在这个波形的极值点上的导数是0,所以这些极值点时对应的电流就是0,而在x轴过零交点上的导数最大(变化率最大),因而过零点时刻的电流最大。 上面这个关系说明了:电压最大时(正、负极值)、电流最小;电压最小(电压=0v)时的电容器充放电流最大。这与物理常识并不矛盾。电压最大时,在dt时间范围内电压却不再发生变化,所以没有电压的变化就没有电流;过零点虽然电容器上不存在电压,但是这个时候却是外界对它施压最大的时刻,最大的电压当然会获得最大的电流。…
经过三组RC网络相移之后的电压波动
本文尚未完成,内容还有错误,只当参考资料阅读。 一、问题的提出 有了前面的结论,可以知道电容电压跟随交流电源电压的关系,是满足下面的方程的: 1、这个方程中的 Vm / [(1+(wRC)^2)^(1/2)] 可以被视为A,这个A就是电容电压波形中的峰值。也就是说:在电源正弦的作用下,电容上的电压形成了一个新的正弦波(虽然并不是完整的正弦、起始瞬态略有畸变),这个新形成的“正弦波”的波峰是A; 2、方程中的-arctan(wRC)被视为相移角φ,也就是电容正弦错后于电源正弦的相移; 3、那么新的正弦波的频率呢?频率是不变的。它的频率是和电源频率相同的,只是波峰略低、相位略微向右偏移。 有了如上概念之后,就可以完成以下的两个问题的解答: 1、如何构建一个完美的60°相移,然后通过3组RC相移,完成180°的相移; 2、在进行了180°相移之后的第三组RC网络的输出电压,波峰是多大?也就是说最终反馈回控制极的电压有多少? 这篇博客,将完成上面2个问题的计算和整理。 二、为了实现60°的单组RC相移,重新进行相关元件的参数设置 电源电压峰值:12V。之所以要将电源电压定义为12V,目的是与Jack Kilby的实验相符。在我阅读的相关书籍中提到,他在实验室中用12V直流电开始实验,并在示波器上看到了令人激动的振荡波型; 电源频率:暂定100Hz。之所以要定义成100Hz,是为了方便绘图观察。后期可以重新调整这个频率; 电容:1uF,也就是0.000001F; 电阻:之前我在仿真中是直接使用的1000Ω,现在按照相移角为60°进行计算,电阻应该使用2760Ω。这里还有一个额外的问题:为什么之前仿真中,电容使用1kΩ也可以正常振荡呢?这个问题需要以后有时间了,再深入推敲一下; 如上的基本参数就定义好了,按照上面定义的参数,进行绘图,然后进行仿真,看绘图计算结果与仿真结果是否一致。 三、三组RC相移之后的最终波形及电压 其实有了上面的计算依据之后,不画图也可以计算出经过3次RC相移之后的最终输出电压峰值是多大了。因为经过一组RC之后的电压峰值是A,所以经过3组RC之后的电压峰值是A的三次方。因而,如果电源电压的峰值时12V,那么: 经过第一组RC之后的电压将会是6V左右;第二组RC之后的电压将是3V;第三组之后的电压将是1.5V。也就是说最终反馈回控制极的电压的波动将在+1.5V ~ -1.5V之间。 下面是使用SageMath完成的画图,从只有电源电压开始、一条条的增加新的电容电压曲线。需要注意的是要忽略掉曲线开始瞬态部分的失真情况:…
RC振荡电路初学笔记(3)
这是一篇临时的备忘文章,主要是将最近几天对RC振荡器的学习进展做一个简单的罗列。虽然已经花了不少时间在这个电路上,但是我对这个电路的细节还有很多的欠缺。好在最令我困惑的几个问题,已经基本搞清楚了: 1、在这个振荡电路中,使用相移器的目的是什么? 答:这个问题我现在“隐约”有了答案,但是还需要对当前的认知进行更深入的学习,以便从数学公式上对相关的“相移量”有个更加准确的认识、并且要能通过参数计算出具体的结果。尤其是我现在所初步感受到的“电容电压跟随源电压”,它的跟随程度和如何控制,要学会具体的计算过程; 2、为什么要使用3组RC相移网络? 答:这个问题现在我已经可以通过画图的方法得出答案了。这个问题的答案的得来对我而言十分的不易:自己既没有夯实的基础知识、网络上又没有比较明确的答案。幸好最后自己想出了答案。虽然暂时没有办法印证我当前的答案是否标准、正确,但感觉应该基本是靠谱的。为了让答案更容易理解,这个知识点要配合一些画图才能完成。所以接下来将学习使用SageMath将相关的正弦波形绘制出来; 3、电容的容抗的本质是什么? 答:还没有搞清楚; 4、NPN为什么是电流控制型元件? 答:这个问题似乎也有了一个初步的答案。不过也还没有将答案从头梳理、逐一印证。所以还需要一定的时间完成这部分知识的整理、证实。并且在确定自己的想法就是书本上表述的意思之后,整理成博客文章,发在这个系列文集之中。 5、我当前绘制的RC相移振荡器电路,起振阶段的工作原理是怎样的? 答:不确定,不了解。因为我现在使用的2款仿真软件对于起振阶段的仿真并不相同,所以也说不清哪一个软件的起振阶段描述是准确的。因为无法确定哪一个表现准确,也就无法去“打哪儿指哪儿”的想它的起振过程。所以这个起振阶段的起振过程,还要再花时间推敲; 6、我当前绘制的RC相移振荡器电路,是否真实、准确? 答:这是相比Jack Kilby的论文而言的。他的论文中对于RC相移部分使用了一个很简略的画法。现在不确定他的简略画法是:a、一坨电容覆盖在一坨电阻上面,就是与3组RC网络等效的;b、其实简略画法要展开成3组RC网络才可以;c、在他的真实电路实现内部,还有其它未知的细节;以上哪种情况呢? 以上,就是现在我对RC相移振荡器的学习进展。如此看来,已经学习过的内容还没有整理成文章、大体了解了的内容还没有深入探究、尚未了解的内容还有很多……如此看来,这个系列的学习工作,还是有很多事情要继续的。
RC振荡电路初学笔记(1)
振荡电路(Oscillator Circuit)是用于产生特定频率和振幅的正弦波形或非正弦波形的电路。整句话有些拗口,简单来说:震荡电路就是可以产生正弦波形的电路。想要构成振荡电路,需要由三个基本功能单元共同构成:振荡器、放大器、反馈器。 比较常见的是LC振荡电路和RC振荡电路,因为最近在看《半导体发展史话》,其中提到了人类历史上第一枚集成电路芯片,顺着这个话题看下去,Jack·Kilby先生最初制造的三个基础电路之一,便是RC震荡电路。于是对RC振荡电路产生了兴趣,希望能够深入的了解一下。 RC振荡电路的组成方式比较多,其中使用元件数量最少、原理相对最简单的是RC相移振荡电路,即RC Phase Shift Oscillator Circuit,它仅需少量的RC网络、以及一颗开关管,即可实现稳定的震荡输出。 例如以下电路,仅需使用电阻和电容构成的RC相移网络(3组),在9V直流电压源驱动下,便可以产生固定频率的振荡输出(正弦波输出): 上图是比较常见的RC Phase Shift Oscillator电路,使用的是NPN开关管,但是Jack·Kilby当初设计的时候使用的是PNP开关管,这其中的差异和原因暂时并不重要,无论使用NPN还是PNP,先将基本的电路画出来、有个感性的认知便可以了。 Jack Kilby的发明所刊发的论文是 US3138743A,在其中提到了使用集成电路半导体生产工艺制作的几个电路图。在这篇论文所提及的几个应用电路中,最简单、最具代表性的便是RC振荡器。 但是这份发明专利看上去有一些吃力,主要是其中的电路图并不是我们今天熟悉的绘制方法。虽然图8.b和图8.c仔细看还是能够看出原理图的线框,但其中的符号对于初学者而言却有一些陌生,看似认识、其实与标准画法都有一些差异,它对相关电路的画法如下: 将上面的原文8.c重新绘制一下,大概是下面这个样子。这个RC振荡电路和今天比较成熟的振荡电路有一些差异,例如和本文上面所画不同,在 Jack Kilby 的论文中使用的是 PNP 开关管、而如今主流的则多是使用 NPN,或者在今天更多的则是使用 MOS 管、或直接使用放大器作为核心放大部分。 不过具体使用什么核心器件进行放大,本质上都是相似的。我想只要对其中一个细致深入的学习明白,其他的相似电路也就能够较快掌握了。所以接下来,我将对这个电路进行更详细的研究、学习。