RC震荡电路学习笔记(7)
在《RC震荡电路学习笔记(6)》中,已经了解了电容中的电流与电压相位相差90°的原因,并且也知道了一个简单的RC电路可以形成电压信号的相移,此时按道理说,就可以通过3组RC相移器构造出的180°相移网络做出振荡器来了。 并且还是依据上一篇文章中最后得到的频率计算公式,可以计算出最终的频率应该是: 滞后器网络: 超前器网络: 然而事实上并不是上面这个计算得到的频率。上一篇文章中用于计算的只是“纯理论模型”,这个理论模型中的3组相移器是被假设成彼此孤立、不会相互影响的。然而实际电路并不是这种纯理想情况,实际电路中的三级相移器是彼此耦合在一起的,因而拿出任何一点考量,都会发现它并非单纯的RC电路,整个系统中的阻抗都会相互耦合作用到一起。 因而上一篇文章中的计算只是对RC相移网络的原理进行了解和讲解,并不能用于指导真实电路的设计和计算。 对于真实的电路,要使用传递函数进行分析,这个传递函数的定义是:,我使用M意思是测量量,这个具体的测量通常是电压,也就是输出点对输入点的电压比视为电路的信号传递能力。在三级RC相移网络中,不考虑RC网络前级、后级更复杂的情况,仅对这个相移网络进行分析的话,容易得出: 整个网络的信号传递 现在仅以第一级传递进行考量:因为第一级RC环路中的电流处处相等,因而输出点的电压就是R和C的分压。后面的第二级、第三级也都是这样的情况,所以可以根据传递函数得到如下的传递计算式:。 最终得到总的RC网络传递计算式: 因为考量的是输入点和输出点电压,而电压等于电流与阻抗分压的乘积,电流在每一个环路中显然又是处处相等、满足基尔霍夫电流定律的,因而这个传递式最终的表达式便变成了对电路中阻抗的分析。 如果按照上一篇文章中的理想模型来看,传递函数将写成:,这个模型不难求解,而且解出来的结果也是和上一篇文章最终得到的结论是一致的。 然而本篇文章已经明确了:在真实电路中由于各个IC的相互耦合引起了每一个考量点的阻抗的变化,因而上述传递函数最终变成了:。 也就是对于第一级、第二级的输出点位置上,并不是简单的串联点,而是与后级电路形成了并联关系。它的阻抗带入式是:。 看上去并不复杂,实际计算那是相当困难的。至少我经过了先后四次手算都没能得到最终的正确结果。现在感觉这个代数计算很困难,隐约觉得在复数工具中应该有比较便捷的计算方式,所以我便又重新开始看复数方面的知识,期望能够找到关于上式的计算工具。 总之,它的计算结果是:,此时为了方便后面的观察和分析,设 ,便可以将上述传递函数重新改写为:。 至此传递方程所能体现出的相移能力就显现出来了,因为这三组RC相移网络完成的恰是180°的相移,因而它的虚部等于0,也就是。这个虚部为0的物理客观,便构成了最终的结论。如此也就得到了真实电路(比上一篇理论电路真实、但依然是经过大幅度简化)的实际频率修正式。 但是注意到在更早之前的一篇笔记《RC振荡电路初学笔记(5)》中,对于实际的频率计算式还有更复杂的因素要考虑,当时我还在困惑是不是其中的哪一个频率计算式有错误,实际上两个计算式都是正确的,只是而一个式子是这篇文章已经得到了的,而那篇文章中的第二个计算式,显然是额外考虑了电路中其他的IC部分的耦合影响。 只是当前还没有学到。
RC震荡电路学习笔记(6)
一、之前的学习笔记整理: 学习笔记 内容简述及收获心得 RC振荡电路初学笔记(1) 关于Jack·Kilby发明集成电路,并且这个电路是RC相移震荡电路的引子 RC振荡电路初学笔记(2) 关于Jack·Kilby发明集成电路的历史趣闻 RC振荡电路初学笔记(3) 罗列了几点RC相移电路中的个人困惑和备忘 RC振荡电路初学笔记(4) 对Jack·Kilby为什么使用PNP而非NPN做震荡电路做了些毫无根据的猜测 RC振荡电路初学笔记(5) 通过仿真软件对RC电路具体参数确定时的正确输出频率做了仿真 RC相移震荡电路学习历史笔记列表 二、电容电流超前于电容电压的原因: 书上的解释是:只有对电容器充电之后,电容器内部有了电荷,电容器两端才有电压,所以流过电容器的电流是超前于电压的。如上的这个表述我是万分的无法理解和接受,电流和电压是同时产生的,怎么可能有谁超前、谁滞后的说法呢? 在物理世界中,电压与电流应该就是彼此同时产生、同时消失的,不会有电流超前于电压的“预知”能力(如果特别特别较真儿、我觉得也应该是先有电压才能驱动产生电流,但他们二者的因果时序近乎于瞬时,所以不能用可评估的时间去表述谁先谁后。所以无论如何也没有道理说出电流超前于电压这种话来)。更准确的表述应该是:电容器上的电压变化率引起了电容器上的电流产生,而电容器上的电压波形与电流波形在同个坐标系上比较,是相同的正弦波形,但相差着90°的相位差。 以最简单的一个理想电容器举例,图样就是一颗电容器画在纸面上: 这个时候电容器内部无论带有多少电荷,它的电荷量都不会随着时间发生变化,因而电容器上不会产生电流。当外部向电容器输入电荷、或者电容器向外部输出电荷时,随着电荷的增加或减小,电容器上同时的表现出了电压的波动和电流的产生。 因为电容器的电流 所以电流的波动和电压的波动是同时因为电荷的增减而同时引起的。 而又依然是通过上式可以看出来:在外部存在一个正弦电压施压在电容器上时,电容电压的变化频率就是电源电压的变化频率,所以电容电压 电容电流 此时就能看出来电容上的电压与电流相差90°的关系来了。 额外的,还可以用另一个更简单的解释来说明二者存在着90°的相位差。依然是通过观察电容器的电流 。能够想到的是其中的电压V是个正弦波形态,那么在这个波形的极值点上的导数是0,所以这些极值点时对应的电流就是0,而在x轴过零交点上的导数最大(变化率最大),因而过零点时刻的电流最大。 上面这个关系说明了:电压最大时(正、负极值)、电流最小;电压最小(电压=0v)时的电容器充放电流最大。这与物理常识并不矛盾。电压最大时,在dt时间范围内电压却不再发生变化,所以没有电压的变化就没有电流;过零点虽然电容器上不存在电压,但是这个时候却是外界对它施压最大的时刻,最大的电压当然会获得最大的电流。…