《普林斯顿微积分读本》阅读备忘(1)
数学很差、差到高中数学都已经忘光、总要借助网络或计算器才能得到答案。最近读《普林斯顿微积分读本》,想提升一下自己的基础数学水平,并争取从头到尾将这本书读完。 断断续续看了两个多月,才刚看到§6.6。接下来将继续阅读§6.7-直接画出导函数的图像。 这篇文章目的是做一个之前阅读的备忘,否则过不了几天,也许又是狗熊掰棒子——把前面已经阅读过的内容忘记了。 一、前面章节主要讲的是什么? 主要讲的应该都是高中的数学知识,属于从高中的代数、向着高等数学微积分入门课程的过渡,这个承上启下的“衔接部分”,主要讲了极限、导数的概念,并且通过一些例题解释了如何计算极限和导数。 在介绍导数的基本概念时,大概讲了讲导数的本质——在图像上某一点的导数,就是这一点上的斜线斜率,换言之就是这一点上的最佳线性逼近。 二、我现在还不理解的事情有哪些? 主要是今天在阅读的时候,在“速度和加速度”章节上的“加速度为负数”例题上,有一个知识点不会:求解,或者说对于形如的方程如何求解。 书中只说用“因式分解”可以得到两个实根,并且其中一个是负数在例题的环境下应该舍弃。并没有具体的推导过程,显然是因为一元二次方程求解属于高中数学知识,显然便不展开了。但我已经忘光了,所以不会求解。只好用最笨的方法——观察法,找到了它的解。(幸好这个方程可以通过观察找出解来)。 update 2024.07.04:经过重温一元二次方程求解方法,大概知道了配方法和韦达定理,并且已经用配方法和它推导出的最终直接求根公式,完成了这部分的例题。 三、接下去要继续学习 以上就是最近的读书笔记,接下去,继续看:§6.7-直接画出导函数的图像。
Electron.js中的警告错误2则
最近在使用electron.js进行一个客户端APP的开发,虽然electron.js的开发可以实现一端开发、跨平台实现。但实际上我的主要考虑发和运行环境是一样的——都是在Windows10系统中进行。此时遇到了2个警告问题,这2个警告都没有找到原因、并且都没有解决,只是先临时记录一下: 1、Request Autofill.enable failed APP启动之后,在主进程的控制台输出上会有如下的错误提示:”Request Autofill.enable failed. {“code”:-32601,”message”:”‘Autofill.enable’ wasn’t found”}”, source: devtools://devtools/bundled/core/protocol_client/protocol_client.js (1) 这个问题在网络上没有找到比较准确的答案,网上提到的通常是:这个警告信息并不构成实际问题,可以忽略。但是有人也提出“做为编码洁癖者,受不得这样的提示出现”。 经过尝试发现,这是在开发时打开了浏览器的debug窗口引起的,如果在开发的时候不打开调试窗口,则不会出现这个错误。 2、Electron Security Warning (Insecure Content-Security-Policy) This renderer process has either no Content…
又新买了一个USB网卡
1. 之前本来有一个USB网卡,但是被朋友“借走了”,只好再新买一个。之前被朋友借走的是“绿联”,最近因为“囊中羞涩”,所以只能买一个性价比更高的品牌——比亚兹。 我不太清楚这些不同的品牌、但是功能相近的小周边,本质上有没有品质和成本的差异,但是单从外观和使用体验上,暂时并没有感受到什么太大的差异。 可偏偏就是这样一个“没有差异”的感觉,却让我的心情十分不好。原因在于我又有些“替古人担忧”了。我总是觉得这种看似谁都可以做的小周边产品,应该有个更专注、更专业的品牌,那样才能令患有“购买焦虑症”和“选择恐惧症”的人,在购买的时候,不会有太多的左右为难——有钱的时候就买公认最好、最专业的品牌,没钱的时候买个凑合能用的临时将就一下。 没有,这种小周边、小电器,现阶段应该是没有谁家能说自己就是最专业的,大家都是你做我也做,他有谁都有,并不能通过参数、配置、指标分辨出好歹。所以购买的时候总会很纠结。更多的时候,这种商品的购买往往是通过“先入为主”在自己印象中给出它的归属。 例如电脑周边的小产品,我莫明其妙的就会觉得“绿联”非常好、非常专业。为什么会有这种感觉呢?说不好,似乎是“绿联”这个品牌的名字起的不叫正规、大气吧。
记一个自己学习初等数学“切线”时的困惑
一、我的困惑和不解 函数的图像如下,显然的,在原点处是没有这个函数的切线的。但这里“显然”似乎又不是那么“显然”,切线究竟是什么呢?对于在平面上的曲线的切线,历史上有过多种定义方式,现今对切线的定义与莱布尼茨给出的定义表述是一致的,都是利用极限的思想对切线进行定义。 对于曲线S上的某一点A,在A点外做另一个同样落在曲线S上的点B,这样AB可以构成一条直线L,这条直线L可以称为曲线S的割线。 当B点沿曲线移动、并逐渐向A点接近,也就是B沿曲线S像A点逼近,当时,得到的割线便是经过A点的曲线的切线。 上面的定义本来能够解答下面这个图象的疑问:为什么在图像的原点处,没有切线呢?答:因为如果设原点处为A,可以从图像上看出来,B点在左边和B点在右边两种情况下,当时,得到的“极限L线”不一致,所以原点、也就是A点处的切线是不存在的。 但是上面这个答案、或者说解释,以我现在的数学水平,是无法“透彻理解”的。原因在于: 1、我为什么不能说这一点上有2条切线?为什么偏偏要说这一点上的切线不存在?难道图像上任何一点只能最多只有一条切线吗? 2、并不是,而直线既然是通过A和B两点定义的,那么在时就不是严格的,此时通过极限得到的与时得到的就一定是一样的吗?这里额外的又回到了上面的问题:没有2个点,怎么定义出的直线呢? 不想了,想多了脑袋痛。我觉得想通过“极限”定义出切线,也许还有其他基础知识需要学习。换句话说,我隐约感觉:或者是我的学习脉络不正确;或者是这个定义的脉络不正确。也许应该先有导数的定义,有了导数的定义就有了斜率的概念、有了斜率和点A,就可以通过直线的另一个定义方式——点斜式——定义出直线。 所以如果按“将定义脉络翻过来”的想法来解释,也许就是:图像上某一点要先可导,当它可导时就是有斜率的,从而通过“点斜式直线定义”,这一点就是有一条“点斜式可唯一定义出的直线”的,从而这样一条唯一存在的直线就是该点的“切线”。 二、额外的问题: 在搜索上面的问题及尝试通过互联网找到答案时,看到网上有这么3句话: 1、在数学中,切线是与曲线在某一点相切的直线。更严格地说,曲线上某一点的切线是该点处的最佳线性逼近。切线的定义依赖于“可微性”的概念。如果曲线在某一点处是可微的,那么该点处的切线是唯一的; 2、如果曲线在某一点处不可微,则该点处的切线可能不存在,或者不唯一; 3、如果切线的斜率为无穷大,则切线是垂直的; 上面这三句话令我更加“头晕目眩”了。原本的问题没有得到解答,却又多出来更多的“读不懂且理解不了、想不出具体情形”的表述。我现在对数学学习的感觉就是:不要想太多,能把课后习题做出来,就知足了。
柯西-黎曼方程(C-R条件)学习备忘
一、历史 1、柯西-黎曼方程,也被称为C-R条件,全称是Cauchy-Riemann equations; 2、这是一个由2个偏微分方程组构成的系统,通过这个系统可以验证给定的复变函数是否可微。因为C-R条件用于验证指定方程是否可微,所以是一种“条件验证功能”,因而叫做“C-R条件”; 3、C-R方程最早可能是1752年时,由欧拉(Leonhard Euler)首次发现的,虽然他发现并记录了这个方程组,但并没有将这个“条件方程组”与“复变函数的可微性”联系起来; 4、到了1821年,柯西(Augustin-Louis Cauchy)证明了复变函数可微的必要条件是满足C-R方程; 5、再到1851年,黎曼(Bernhard Riemann)证明了满足C-R方程是复变函数可微的充分条件; 6、经过了上述3个阶段之后,C-R方程正式成为了复变函数可微的充要条件的验证依据。
三极管基极、集电极、发射极三个名称的含义由来
本文仅为个人观点 一、问题 三极管的三个电极各自有自己的名字,分别是:基极(Base)、集电极(Collector)、发射极(Emitter)。对于PNP型、NPN型三极管,他们的图示分别如下: 对于三个电极的命名,我一直比较混乱。虽然能够记住他们,但是脑海中却总是有种“毛毛躁躁”的困惑,说不清、也想不明白,为什么这三个电极要如此命名呢? 二、历史 1、1947年 PNP型三极管和NPN型三极管并不是在同一时间被发明出来的,而是在1947年12月时,NPN型三极管先被发明了出来,它是由William Shockley、Walter Brattain和John Bardeen等人,在AT&T贝尔实验室中发明、制造出NPN型三极管。 2、1948年 之后在1948年时,贝尔实验室的John R. Pierce和Lester Hogan两人在《The Bipolar Transistor – A New Type of Semiconductor Amplifier》论文中,首次使用基极(Base)、集电极(Collector)、发射极(Emitter)这三个名称。 注:这篇文章最初发表在1948年的《Proceedings of the…
解析函数例题1则
一、例题的出现 在《复变函数》最开始的部分,有一道例题,有如下两种表述方式: 例:证明:函数 在z=0点可导,且导数等于0。 或者另外一种表述方式: 例:讨论函数的可导性。 上面两种表述方式其实是一样的,针对的都是相同的函数,研究的课题也是一样的:求出它在点的导数。有趣的是,这两个表述方式都巧妙地避开了“不严谨”。 如果让我出这道题,也许会被写成:计算出的导函数,并求出的值。 按照我的设问方式,实际上也是可以正常进行这道题的求解的,但是“问法”相当于已经默认了这个复变函数是“处处可导”的了。上面的例题使用的设问方式就很“狡猾”,它们知道这个函数并非处处可导、只在时才可导,所以从最初的设问环节开始,就避开了“不严谨”的说法。 所以这道题按照例题的问法,至少应该从以下2个方面完成: 1、深刻的理解导数和导函数是什么,小心地求证原函数是否在指定的点处可导; 2、如果原函数并非处处可导,而只在部分区域上可求导。则要看题目要求的求导点是否在可导区间上(例如本例题要求在点得出导数值),在可求导区域内则进行求导、不在可求导区域内则不存在对应的导数。 二、函数可导、导函数的意义 个人理解:函数可导、有导函数,大意似乎是:这个函数连续、并且拥有连续的渐变光滑性,其中连续的渐变光滑性的意思就是他在图像上的每一个点上都有切线存在。 上面的说法如果正确的话,在实函数上是可以比较方便的通过图像理解的。但是对于复变函数而言,图像上理解起来有一些吃力。我还不知道如何通过图像去理解这个事情(图1、图2)。 例如下图1,就是相关复变函数的图像,从这个图像上能看出函数的确是连续的、并且是渐变的,如果它的导函数也是连续的、渐变的(所有的色彩过度都是渐变衔接),那么这个函数就是有导函数的。但是从图2来看,这个函数的导函数并不是在每一个区域都是渐变的,它只在所有的横坐标上有着渐变色彩,而在任何一个纵坐标的垂直线上,都是“固定单色”,不在拥有色彩的渐变性。因而大概猜测,这个函数的导函数是不存在的。 图像1:函数的图像 图像2:函数的图像 三、除z=0点外,其他地方不可导 “深色教材”的P17页就是上面的例题,但是我还是没有完全理解。整体意思就是它最终得出的结论就是,在除了z=0的点以外的地方,导函数的值都不存在极限,因而也就不可导。具体的求证过程如下: 已知函数 ,此时,由导数定义可知 情况1:当时,上式很容易看出来是趋于0的,所以极限存在、且是0; 情况2:当时,上式的极限将等于。此时第二项中的“分数”是多少呢?这里就要再展开详细的推敲一下,也就是产生了一个新的子问题: 子问题:已知,求 五、当时,求 上面已经将问题转成了新的问题,现在对这个新的问题进行推导。书上这个过程是非常简略的,但是我数学基础差、脑子也不好使,所以展开一点点的推导。…
专注于斐波那契数列研究的期刊
Fibonacci Quarterly是由Fibonacci Association主办的一本期刊,专注于对斐波那契数列(Fibonacci)及相关的数学领域进行研究。它的网站是:https://www.fq.math.ca/ 在它的网站上提供了从创刊的第1卷起,至第47卷(1963年-2009年)的全部电子版期刊,从48卷之后发布的期刊虽然不再提供全文、但也仍然会提供摘要版本。 我对斐波那契数列相关的数学知识并不感兴趣、工作中也几乎没有与之相关的工作,但是因为业余生活中比较喜欢看数学方面的科普文章,所以对这个数列知道一些有趣的故事。 斐波那契数列是由1202年斐波那契收集阿拉伯和希腊的数学研究资料、编撰整理出来的《算盘书》中一个有趣的“兔子问题”引申、发展出来的。在《算盘书》中,斐波那契提出了一个“兔子问题”:假定大兔子每月生一对小兔子,而小兔子经过两个月就可以长成大兔子,那么自拥有一对大兔子开始,一年后可以繁殖多少对兔子? 上面这个兔子问题,如果绘制成表格: 从这个表格上可以看出来,无论是大兔子的数量、还是大兔子当月诞下的小兔子数量、还有每个月新长大的小兔子数量(从3月开始),都是相同的数列:1,1,2,3,5,8,13,21,34,…… 这个数列就是“斐波那契数列”,它从第三项开始,每一项都是前两项的和。如果用计算式表达,可以表示成:。 这个数列以及它的第n项的表达式,看上去都似乎平平无奇,然而如果要想将它的第n项表达式写成通项公式便不是那么简单的事情了。事实上,它的通项公式是自1202年斐波那契数列提出之后,经过了600多年、直到1843年才由法国数学家雅克·比奈(Jacques Philippe Marie Binet)归纳出来,因而这个通项公式被命名为Binet公式:。 Binet通项式有趣的地方有两个: 1、首先是一目了然的:它其中含有无理数,这实在是令人感到不可思议。一个简单的、完全由整数构成的数列,竟然需要使用无理数构造它的通项式。实际上也的确如此,如果不是引入了无理数,那么也不至于经历了600多年才被比奈归纳出来; 2、另一个有趣的事情可以看出来,当斐波那契数列趋于无限大之后,它的前后两项的比值趋于 。而这个比值恰恰是黄金分割比例0.618…… 斐波那契数列除了上面这些浅显的常识之外,还有很多重要的应用,无论是在计算机、密码学;还是在金融与经济学;又或者在物理和工程学上,都能见到它的身影。也正因为如此,回到本文开始提到的网站,才会有专门的这个专刊,定期刊发有关斐波那契数列的最新研究成果和消息。 update 2024.11.10 1、最近闲来无事阅读《数学史》,看到其中也有关于斐波那契的历史介绍。其中提到斐波那契生活的公元1200年左右恰是欧洲文明的“黑暗时期”,那时的欧洲非常荒芜、落后,并没有后来文艺复兴时期的辉煌璀璨。可以说是人类历史上的蒙昧时期; 2、前几天自己因为记不住牛顿二项式展开,所以手动推敲了一遍。其中也用到了一个数列,不过并非斐波那契数列、而是杨辉三角形。我因为以前并不知道斐波那契数列,所以误以为杨辉三角形就是斐波那契数列,今天才知道两个数量完全风马牛不相及。
RC振荡电路初学笔记(5)
我放弃了基于PNP进行RC振荡电路的学习,原因是以PNP做核心放大的文章实在是太少了。网上全都是以NPN作为放大器进行介绍的,所以我也先按照NPN来学习。等到对振荡电路理解透彻之后,再推敲改成PNP后有什么区别吧。 1、之前电路图的错误: 首先是之前自己胡乱画出来的基于NPN的电路,严格来说都是错误的:RC反馈网络并不是如我之前画的那样需要3个去地电阻(这篇文章中的插图就是错误的,注1),而是只需要2个去地电阻;额外的还需要一颗串联电阻。所以正确的电路图今天依照《这份材料》实现。 2、频率的计算: 这个地方比较郁闷,因为对于这个电路而言,频率无论使用下面哪个公式进行计算,都是与实际仿真有较大差别的: 使用CircuitJS仿真结果是9.524KHz,使用LTSpice仿真结果是9482Hz。可以看到CircuitJS和LTSpice的计算结果是一致的,但与我的笔算结果都是相差很大的。这是什么原因呢? 注1:其实也不能算是错误,因为网上也有其他材料中,反馈部分都是各自有各种各样的不同,所以估计也不是错误,只是自己还不理解其中每一个IC的作用,还要再花时间了解、学习。 注2:Jacob Millman和Arvin Grabel合著的《Microelectronics》一书中,应该是有比较详细的RC相移振荡器的介绍的,图书在这里 Microelectronics: Jacob Millman, Arvin Grabel 。可惜我手中其他基本别人著的《微电子电路》的图书中,都没有这个电路的详细讲解,有一些郁闷。 update 2024-11-11 时隔5个月,上面的问题终于有了一些小的进展。首先是完成了《RC振荡电路初学笔记(6)》的学习和学习笔记整理,其次是今天晚上终于搞清楚了频率的计算方法,不过还没有时间将今天的笔记整理出来。
RC振荡电路初学笔记(4)
想基于Jack Kilby的电路文档学习RC相移振荡器是有一定的难度的,主要是因为他当初设计的电路是基于PNP核心,而今天我所能找到的RC相移振荡器的文章,都是基于NPN为核心讨论。 所以我想应该先把基于NPN的RC相移振荡器了解一下,才有可能推敲出Jack Kilby的电路的工作原理。 一、题外话:为什么要用PNP而不用NPN? 这里有一个额外的话题:为什么Jack Kilby要基于PNP做这个RC相移振荡器的集成电路呢?首先排除最不可能的原因:PNP在1958年的时候,没有NPN成熟。这个猜测是错误的,实际上晶体管从诞生之处,就是NPN先成熟起来,无论是制造工艺的成熟、尺寸的小巧、成本的低廉,都是NPN更胜一筹。所以没有道理不使用NPN。 那么Jack Kilby当年为什么不用NPN、而使用PNP呢?查资料,没有答案。各种资料随便整合到一起的猜测如下: 1、Jack Kilby进入TI实验室之后,并不是研究基于硅基片的晶体管工艺,他做的研究是基于锗基片进行生产; 2、Jack Kilby的工作,也许是只得到了PNP的研发权限,没有NPN的研发权限(这一点是猜测); 3、Jack Kilby的发明研发工作,也许需要避免向其他技术科室索取硅基片或NPN技术(也是猜测); 4、对于相同的电路模块,PNP电路也许在稳定性上不如NPN,但是从使用的IC数量上也许会少于NPN; 综上四点,也许就是Jack Kilby使用了PNP做核心元件的原因吧。 二、还是题外话:为什么NPN更优秀? 无论上面的第一点是怎样的情况,在今天我都遇到了一个新的困惑:为什么我能找到的RC振荡器的教程,都是基于NPN的、而没有一篇是基于PNP进行阐述的? 另外,从现在的结果上来看,似乎NPN更稳定,但究竟更稳定在哪里呢? 三、基于NPN的RC相移网络振荡器 这里有一些问题,先罗列出来: 1、反馈网络的两种形式: 反馈网络既可以是电阻串联、上面并联电容器;也可以是电容串联、上面并联电阻器。通过仿真,我也尝试出了两种不同形式的电路。如下图所示: 值得注意的是,两种形式在通过RC网络计算输出频率时,使用的公式是不一样的。 电容串联时(常见形式):…