RC震荡电路学习笔记(7)
在《RC震荡电路学习笔记(6)》中,已经了解了电容中的电流与电压相位相差90°的原因,并且也知道了一个简单的RC电路可以形成电压信号的相移,此时按道理说,就可以通过3组RC相移器构造出的180°相移网络做出振荡器来了。 并且还是依据上一篇文章中最后得到的频率计算公式,可以计算出最终的频率应该是: 滞后器网络: 超前器网络: 然而事实上并不是上面这个计算得到的频率。上一篇文章中用于计算的只是“纯理论模型”,这个理论模型中的3组相移器是被假设成彼此孤立、不会相互影响的。然而实际电路并不是这种纯理想情况,实际电路中的三级相移器是彼此耦合在一起的,因而拿出任何一点考量,都会发现它并非单纯的RC电路,整个系统中的阻抗都会相互耦合作用到一起。 因而上一篇文章中的计算只是对RC相移网络的原理进行了解和讲解,并不能用于指导真实电路的设计和计算。 对于真实的电路,要使用传递函数进行分析,这个传递函数的定义是:,我使用M意思是测量量,这个具体的测量通常是电压,也就是输出点对输入点的电压比视为电路的信号传递能力。在三级RC相移网络中,不考虑RC网络前级、后级更复杂的情况,仅对这个相移网络进行分析的话,容易得出: 整个网络的信号传递 现在仅以第一级传递进行考量:因为第一级RC环路中的电流处处相等,因而输出点的电压就是R和C的分压。后面的第二级、第三级也都是这样的情况,所以可以根据传递函数得到如下的传递计算式:。 最终得到总的RC网络传递计算式: 因为考量的是输入点和输出点电压,而电压等于电流与阻抗分压的乘积,电流在每一个环路中显然又是处处相等、满足基尔霍夫电流定律的,因而这个传递式最终的表达式便变成了对电路中阻抗的分析。 如果按照上一篇文章中的理想模型来看,传递函数将写成:,这个模型不难求解,而且解出来的结果也是和上一篇文章最终得到的结论是一致的。 然而本篇文章已经明确了:在真实电路中由于各个IC的相互耦合引起了每一个考量点的阻抗的变化,因而上述传递函数最终变成了:。 也就是对于第一级、第二级的输出点位置上,并不是简单的串联点,而是与后级电路形成了并联关系。它的阻抗带入式是:。 看上去并不复杂,实际计算那是相当困难的。至少我经过了先后四次手算都没能得到最终的正确结果。现在感觉这个代数计算很困难,隐约觉得在复数工具中应该有比较便捷的计算方式,所以我便又重新开始看复数方面的知识,期望能够找到关于上式的计算工具。 总之,它的计算结果是:,此时为了方便后面的观察和分析,设 ,便可以将上述传递函数重新改写为:。 至此传递方程所能体现出的相移能力就显现出来了,因为这三组RC相移网络完成的恰是180°的相移,因而它的虚部等于0,也就是。这个虚部为0的物理客观,便构成了最终的结论。如此也就得到了真实电路(比上一篇理论电路真实、但依然是经过大幅度简化)的实际频率修正式。 但是注意到在更早之前的一篇笔记《RC振荡电路初学笔记(5)》中,对于实际的频率计算式还有更复杂的因素要考虑,当时我还在困惑是不是其中的哪一个频率计算式有错误,实际上两个计算式都是正确的,只是而一个式子是这篇文章已经得到了的,而那篇文章中的第二个计算式,显然是额外考虑了电路中其他的IC部分的耦合影响。 只是当前还没有学到。
RC震荡电路学习笔记(6)
一、之前的学习笔记整理: 学习笔记 内容简述及收获心得 RC振荡电路初学笔记(1) 关于Jack·Kilby发明集成电路,并且这个电路是RC相移震荡电路的引子 RC振荡电路初学笔记(2) 关于Jack·Kilby发明集成电路的历史趣闻 RC振荡电路初学笔记(3) 罗列了几点RC相移电路中的个人困惑和备忘 RC振荡电路初学笔记(4) 对Jack·Kilby为什么使用PNP而非NPN做震荡电路做了些毫无根据的猜测 RC振荡电路初学笔记(5) 通过仿真软件对RC电路具体参数确定时的正确输出频率做了仿真 RC相移震荡电路学习历史笔记列表 二、电容电流超前于电容电压的原因: 书上的解释是:只有对电容器充电之后,电容器内部有了电荷,电容器两端才有电压,所以流过电容器的电流是超前于电压的。如上的这个表述我是万分的无法理解和接受,电流和电压是同时产生的,怎么可能有谁超前、谁滞后的说法呢? 在物理世界中,电压与电流应该就是彼此同时产生、同时消失的,不会有电流超前于电压的“预知”能力(如果特别特别较真儿、我觉得也应该是先有电压才能驱动产生电流,但他们二者的因果时序近乎于瞬时,所以不能用可评估的时间去表述谁先谁后。所以无论如何也没有道理说出电流超前于电压这种话来)。更准确的表述应该是:电容器上的电压变化率引起了电容器上的电流产生,而电容器上的电压波形与电流波形在同个坐标系上比较,是相同的正弦波形,但相差着90°的相位差。 以最简单的一个理想电容器举例,图样就是一颗电容器画在纸面上: 这个时候电容器内部无论带有多少电荷,它的电荷量都不会随着时间发生变化,因而电容器上不会产生电流。当外部向电容器输入电荷、或者电容器向外部输出电荷时,随着电荷的增加或减小,电容器上同时的表现出了电压的波动和电流的产生。 因为电容器的电流 所以电流的波动和电压的波动是同时因为电荷的增减而同时引起的。 而又依然是通过上式可以看出来:在外部存在一个正弦电压施压在电容器上时,电容电压的变化频率就是电源电压的变化频率,所以电容电压 电容电流 此时就能看出来电容上的电压与电流相差90°的关系来了。 额外的,还可以用另一个更简单的解释来说明二者存在着90°的相位差。依然是通过观察电容器的电流 。能够想到的是其中的电压V是个正弦波形态,那么在这个波形的极值点上的导数是0,所以这些极值点时对应的电流就是0,而在x轴过零交点上的导数最大(变化率最大),因而过零点时刻的电流最大。 上面这个关系说明了:电压最大时(正、负极值)、电流最小;电压最小(电压=0v)时的电容器充放电流最大。这与物理常识并不矛盾。电压最大时,在dt时间范围内电压却不再发生变化,所以没有电压的变化就没有电流;过零点虽然电容器上不存在电压,但是这个时候却是外界对它施压最大的时刻,最大的电压当然会获得最大的电流。…
RC振荡电路初学笔记(5)
我放弃了基于PNP进行RC振荡电路的学习,原因是以PNP做核心放大的文章实在是太少了。网上全都是以NPN作为放大器进行介绍的,所以我也先按照NPN来学习。等到对振荡电路理解透彻之后,再推敲改成PNP后有什么区别吧。 1、之前电路图的错误: 首先是之前自己胡乱画出来的基于NPN的电路,严格来说都是错误的:RC反馈网络并不是如我之前画的那样需要3个去地电阻(这篇文章中的插图就是错误的,注1),而是只需要2个去地电阻;额外的还需要一颗串联电阻。所以正确的电路图今天依照《这份材料》实现。 2、频率的计算: 这个地方比较郁闷,因为对于这个电路而言,频率无论使用下面哪个公式进行计算,都是与实际仿真有较大差别的: 使用CircuitJS仿真结果是9.524KHz,使用LTSpice仿真结果是9482Hz。可以看到CircuitJS和LTSpice的计算结果是一致的,但与我的笔算结果都是相差很大的。这是什么原因呢? 注1:其实也不能算是错误,因为网上也有其他材料中,反馈部分都是各自有各种各样的不同,所以估计也不是错误,只是自己还不理解其中每一个IC的作用,还要再花时间了解、学习。 注2:Jacob Millman和Arvin Grabel合著的《Microelectronics》一书中,应该是有比较详细的RC相移振荡器的介绍的,图书在这里 Microelectronics: Jacob Millman, Arvin Grabel 。可惜我手中其他基本别人著的《微电子电路》的图书中,都没有这个电路的详细讲解,有一些郁闷。 update 2024-11-11 时隔5个月,上面的问题终于有了一些小的进展。首先是完成了《RC振荡电路初学笔记(6)》的学习和学习笔记整理,其次是今天晚上终于搞清楚了频率的计算方法,不过还没有时间将今天的笔记整理出来。
RC振荡电路初学笔记(4)
想基于Jack Kilby的电路文档学习RC相移振荡器是有一定的难度的,主要是因为他当初设计的电路是基于PNP核心,而今天我所能找到的RC相移振荡器的文章,都是基于NPN为核心讨论。 所以我想应该先把基于NPN的RC相移振荡器了解一下,才有可能推敲出Jack Kilby的电路的工作原理。 一、题外话:为什么要用PNP而不用NPN? 这里有一个额外的话题:为什么Jack Kilby要基于PNP做这个RC相移振荡器的集成电路呢?首先排除最不可能的原因:PNP在1958年的时候,没有NPN成熟。这个猜测是错误的,实际上晶体管从诞生之处,就是NPN先成熟起来,无论是制造工艺的成熟、尺寸的小巧、成本的低廉,都是NPN更胜一筹。所以没有道理不使用NPN。 那么Jack Kilby当年为什么不用NPN、而使用PNP呢?查资料,没有答案。各种资料随便整合到一起的猜测如下: 1、Jack Kilby进入TI实验室之后,并不是研究基于硅基片的晶体管工艺,他做的研究是基于锗基片进行生产; 2、Jack Kilby的工作,也许是只得到了PNP的研发权限,没有NPN的研发权限(这一点是猜测); 3、Jack Kilby的发明研发工作,也许需要避免向其他技术科室索取硅基片或NPN技术(也是猜测); 4、对于相同的电路模块,PNP电路也许在稳定性上不如NPN,但是从使用的IC数量上也许会少于NPN; 综上四点,也许就是Jack Kilby使用了PNP做核心元件的原因吧。 二、还是题外话:为什么NPN更优秀? 无论上面的第一点是怎样的情况,在今天我都遇到了一个新的困惑:为什么我能找到的RC振荡器的教程,都是基于NPN的、而没有一篇是基于PNP进行阐述的? 另外,从现在的结果上来看,似乎NPN更稳定,但究竟更稳定在哪里呢? 三、基于NPN的RC相移网络振荡器 这里有一些问题,先罗列出来: 1、反馈网络的两种形式: 反馈网络既可以是电阻串联、上面并联电容器;也可以是电容串联、上面并联电阻器。通过仿真,我也尝试出了两种不同形式的电路。如下图所示: 值得注意的是,两种形式在通过RC网络计算输出频率时,使用的公式是不一样的。 电容串联时(常见形式):…
经过三组RC网络相移之后的电压波动
本文尚未完成,内容还有错误,只当参考资料阅读。 一、问题的提出 有了前面的结论,可以知道电容电压跟随交流电源电压的关系,是满足下面的方程的: 1、这个方程中的 Vm / [(1+(wRC)^2)^(1/2)] 可以被视为A,这个A就是电容电压波形中的峰值。也就是说:在电源正弦的作用下,电容上的电压形成了一个新的正弦波(虽然并不是完整的正弦、起始瞬态略有畸变),这个新形成的“正弦波”的波峰是A; 2、方程中的-arctan(wRC)被视为相移角φ,也就是电容正弦错后于电源正弦的相移; 3、那么新的正弦波的频率呢?频率是不变的。它的频率是和电源频率相同的,只是波峰略低、相位略微向右偏移。 有了如上概念之后,就可以完成以下的两个问题的解答: 1、如何构建一个完美的60°相移,然后通过3组RC相移,完成180°的相移; 2、在进行了180°相移之后的第三组RC网络的输出电压,波峰是多大?也就是说最终反馈回控制极的电压有多少? 这篇博客,将完成上面2个问题的计算和整理。 二、为了实现60°的单组RC相移,重新进行相关元件的参数设置 电源电压峰值:12V。之所以要将电源电压定义为12V,目的是与Jack Kilby的实验相符。在我阅读的相关书籍中提到,他在实验室中用12V直流电开始实验,并在示波器上看到了令人激动的振荡波型; 电源频率:暂定100Hz。之所以要定义成100Hz,是为了方便绘图观察。后期可以重新调整这个频率; 电容:1uF,也就是0.000001F; 电阻:之前我在仿真中是直接使用的1000Ω,现在按照相移角为60°进行计算,电阻应该使用2760Ω。这里还有一个额外的问题:为什么之前仿真中,电容使用1kΩ也可以正常振荡呢?这个问题需要以后有时间了,再深入推敲一下; 如上的基本参数就定义好了,按照上面定义的参数,进行绘图,然后进行仿真,看绘图计算结果与仿真结果是否一致。 三、三组RC相移之后的最终波形及电压 其实有了上面的计算依据之后,不画图也可以计算出经过3次RC相移之后的最终输出电压峰值是多大了。因为经过一组RC之后的电压峰值是A,所以经过3组RC之后的电压峰值是A的三次方。因而,如果电源电压的峰值时12V,那么: 经过第一组RC之后的电压将会是6V左右;第二组RC之后的电压将是3V;第三组之后的电压将是1.5V。也就是说最终反馈回控制极的电压的波动将在+1.5V ~ -1.5V之间。 下面是使用SageMath完成的画图,从只有电源电压开始、一条条的增加新的电容电压曲线。需要注意的是要忽略掉曲线开始瞬态部分的失真情况:…
RC振荡电路初学笔记(3)
这是一篇临时的备忘文章,主要是将最近几天对RC振荡器的学习进展做一个简单的罗列。虽然已经花了不少时间在这个电路上,但是我对这个电路的细节还有很多的欠缺。好在最令我困惑的几个问题,已经基本搞清楚了: 1、在这个振荡电路中,使用相移器的目的是什么? 答:这个问题我现在“隐约”有了答案,但是还需要对当前的认知进行更深入的学习,以便从数学公式上对相关的“相移量”有个更加准确的认识、并且要能通过参数计算出具体的结果。尤其是我现在所初步感受到的“电容电压跟随源电压”,它的跟随程度和如何控制,要学会具体的计算过程; 2、为什么要使用3组RC相移网络? 答:这个问题现在我已经可以通过画图的方法得出答案了。这个问题的答案的得来对我而言十分的不易:自己既没有夯实的基础知识、网络上又没有比较明确的答案。幸好最后自己想出了答案。虽然暂时没有办法印证我当前的答案是否标准、正确,但感觉应该基本是靠谱的。为了让答案更容易理解,这个知识点要配合一些画图才能完成。所以接下来将学习使用SageMath将相关的正弦波形绘制出来; 3、电容的容抗的本质是什么? 答:还没有搞清楚; 4、NPN为什么是电流控制型元件? 答:这个问题似乎也有了一个初步的答案。不过也还没有将答案从头梳理、逐一印证。所以还需要一定的时间完成这部分知识的整理、证实。并且在确定自己的想法就是书本上表述的意思之后,整理成博客文章,发在这个系列文集之中。 5、我当前绘制的RC相移振荡器电路,起振阶段的工作原理是怎样的? 答:不确定,不了解。因为我现在使用的2款仿真软件对于起振阶段的仿真并不相同,所以也说不清哪一个软件的起振阶段描述是准确的。因为无法确定哪一个表现准确,也就无法去“打哪儿指哪儿”的想它的起振过程。所以这个起振阶段的起振过程,还要再花时间推敲; 6、我当前绘制的RC相移振荡器电路,是否真实、准确? 答:这是相比Jack Kilby的论文而言的。他的论文中对于RC相移部分使用了一个很简略的画法。现在不确定他的简略画法是:a、一坨电容覆盖在一坨电阻上面,就是与3组RC网络等效的;b、其实简略画法要展开成3组RC网络才可以;c、在他的真实电路实现内部,还有其它未知的细节;以上哪种情况呢? 以上,就是现在我对RC相移振荡器的学习进展。如此看来,已经学习过的内容还没有整理成文章、大体了解了的内容还没有深入探究、尚未了解的内容还有很多……如此看来,这个系列的学习工作,还是有很多事情要继续的。
重新学习有关电阻和电容的基础知识
最近看RC相移振荡器的时候,发现自己欠缺的基础知识有些多,所以不得不重新学习有关电阻和电容的基础知识。 一、基本概念和定义: 要想了解关于电容的基础知识,我想应该从最基本的电流、电压、电阻方面的知识学起。而这三个基本概念分别是安培、伏特和欧姆三位先生所定义出来的,所以这三个基本的单位使用了三位先生的名字作为定义。 于是就有了: 1、电流:单位是“安培”(Ampere),这是在1836年时为了纪念在电磁学方面有突出贡献的法国科学家安德烈·马里·安培,而以他的名字命名的(虽然是1836年正式命名,但是电流的定义应该早于1800年、早于电压的定义时间)。电流的定义是I=Q/t,含义为在导体内单位时间内所移动的电荷量。 2、电压:单位是“伏特”(Volta),这个概念是亚历山德罗·伏特(Alessandro Volta)在1800年提出的。它的定义是:U=W/Q,即单位电量做出的功。如果电量Q做出的功是n焦耳,说明这些电量Q的电势能降低了、从而释放出了n焦耳的能量。这些Q之所以电势能降低、释放出能量,是因为它们从处于高势能的电场区域移动到了低势能的电场区域。 3、电阻:单位是“欧姆”(Ohm),欧姆定律是在1827年首次提出的。德国物理学家乔治·欧姆(Georg Ohm)在当年发表的《The galvanic circuit investigated mathematically》中,详细描述欧姆定律。在这本书中,欧姆解释了通过简单电路中的各种长度导线时的电压和电流的测量结果,并提出了与现代形式略有不同的稍微复杂的方程来解释他的实验结果。电阻的定义是R=V/I。 二、直接和间接: 从上面的对电流、电压、电阻的定义能够看出来:电流和电压都是有着明确的定义、并且可以通过直接测量,例如直接使用电流表和电压表得到的物理量。所以他们是被精确定义的物理量和物理单位。 而电阻则是根据欧姆定律计算得到的,属于间接物理量和物理单位。虽然电阻也可以通过万用表测量出来,但是使用万用表进行电阻的测量,其内部原理仍然是施加一个电压、然后测量电流,通过电压和电流的测量值,计算出来电阻。所以电阻是计算出来,而不是测量出来的。所以电阻是间接定义、计算得到的物理量。 三、展开说一下“间接”计算: 之所以上面会提到“电阻是基于电压和电流、通过欧姆定律计算”而间接的得出的,原因是对于很多类似的公式,我都存在着困惑:这些计算公式是怎么得来的? 例如,除了电阻R=U/I外,在《电磁学》中提到的Priestley实验,这个Henry Cavendish在1773年完成的实验中,得到了如下的电场力公式: 这个公式我也存在同样的疑惑:Henry Cavendish是凭什么给出的这样一个公式的呢?在这篇blog写作的时候,我似乎解答了自己多年的困惑——这些“间接计算量”并不是想当然地提出来的,而是通过大量的试验,根据试验的数据拟合出来的结果。 为了进一步的将自己的想法整理清晰,先将上面的公式简化一下,直接用库仑定律来当例子。库仑定律是说两个点电荷q1和q2之间的库仑力F,定义如下: 这个库仑定律以及库仑力的计算公式,我之前长久的困惑就是:为什么库伦当年就能“定义成”力是与距离的平方成反比的,为什么偏偏是“平方”,而不是“3次方”、“8次方”呢? 我的想法应该说是非常幼稚的,但我就是闹不明白。现在应该大体上有了答案:库伦之所以能够肯定,是因为他做了大量的实验,并通过实验得出的结论。例如我也给出一些数字来,这些数字假设是实验的记录,那么根据这些数字,反推出公式应该是不难的。 A球电荷量 B球电荷量…
RC振荡电路初学笔记(2)
在上一篇Blog最后提及的Jack Kilby设计制造的人类历史上第一片集成电路芯片,是一枚RC相移振荡器(RC Phase shift oscillator),在输入12V的直流电时,可以产生特定频率的波形输出信号,具体的输出频率和幅值是通过其中的RC相移器设置产生的。 这枚人类历史上的第一枚集成电路芯片,诞生于1958年9月12日的德州仪器实验室中。它之所以与众不同、并且成为今天计算机发展历史上的重要一环,原因在于它是第一枚完全使用半导体工艺、在单晶片上集合集成了电阻、电容、PNP管的电路、也就是我们常说的“集成电路”。 在当时的德州仪器,已经可以规模化生产电阻器、电容器、PNP等电子元件,但是电阻和电容并不是通过半导体工艺生产的,所以要想将这些不同的IC小型化、集成化的“封装”在一起,则需要针对不同的IC进行不同的工艺制作,以便让每一个IC都缩小、让不同的IC彼此靠的更加紧密,从而使最终整体封装出来的电路尽可能小型化、高集成化。 这种令每一个元件都更小、令他们彼此考得更近的“小型化”想法,是比较朴素的想法,德州仪器也是在这种朴素的想法的指引下,设计了多种方案(可能是三种设计方案),但是这些方案本质上都是先将每一个IC缩小、再进行整体组装,如此就不可避免地还是会令最终的产品是一个“组装设备”,相对而言还是会比较大。 图中,Jack Kilby坐在正中间。图片来源:https://commons.wikimedia.org/wiki/File:TIDallasPhippsWeaverBiardKilbyFischer.png Jack Kilby则采用了与上面想法不同的思路:他直接使用半导体生产工艺进行电阻、电容的制造,具体是使用氮化钛制作电阻、使用聚四氟乙烯制造电容,这样就可以令电路中所有用到的IC都是采用相同的半导体制造机制来生产,也就是说最终的所有IC都是“生长”在多片硅晶体上的,不再需要进行彼此的组装,而是一层层“生长、叠放”在一起,从而大幅度的缩小了最终电路的尺寸。 Jack Kilby的想法在实验室中最终得以实现,并且成功的在示波器上看到了预期的振荡输出波形。 最终,Jack Kilby被称为“集成电路之父”并于2000年时因发明集成电路而荣获了诺贝尔物理学奖。与Jack Kilby齐名的是来自于仙童半导体的罗伯特·诺伊斯,他则因集成电路平面制作工艺的发明,所以他们两人被同时誉为“集成电路之父”。
RC振荡电路初学笔记(1)
振荡电路(Oscillator Circuit)是用于产生特定频率和振幅的正弦波形或非正弦波形的电路。整句话有些拗口,简单来说:震荡电路就是可以产生正弦波形的电路。想要构成振荡电路,需要由三个基本功能单元共同构成:振荡器、放大器、反馈器。 比较常见的是LC振荡电路和RC振荡电路,因为最近在看《半导体发展史话》,其中提到了人类历史上第一枚集成电路芯片,顺着这个话题看下去,Jack·Kilby先生最初制造的三个基础电路之一,便是RC震荡电路。于是对RC振荡电路产生了兴趣,希望能够深入的了解一下。 RC振荡电路的组成方式比较多,其中使用元件数量最少、原理相对最简单的是RC相移振荡电路,即RC Phase Shift Oscillator Circuit,它仅需少量的RC网络、以及一颗开关管,即可实现稳定的震荡输出。 例如以下电路,仅需使用电阻和电容构成的RC相移网络(3组),在9V直流电压源驱动下,便可以产生固定频率的振荡输出(正弦波输出): 上图是比较常见的RC Phase Shift Oscillator电路,使用的是NPN开关管,但是Jack·Kilby当初设计的时候使用的是PNP开关管,这其中的差异和原因暂时并不重要,无论使用NPN还是PNP,先将基本的电路画出来、有个感性的认知便可以了。 Jack Kilby的发明所刊发的论文是 US3138743A,在其中提到了使用集成电路半导体生产工艺制作的几个电路图。在这篇论文所提及的几个应用电路中,最简单、最具代表性的便是RC振荡器。 但是这份发明专利看上去有一些吃力,主要是其中的电路图并不是我们今天熟悉的绘制方法。虽然图8.b和图8.c仔细看还是能够看出原理图的线框,但其中的符号对于初学者而言却有一些陌生,看似认识、其实与标准画法都有一些差异,它对相关电路的画法如下: 将上面的原文8.c重新绘制一下,大概是下面这个样子。这个RC振荡电路和今天比较成熟的振荡电路有一些差异,例如和本文上面所画不同,在 Jack Kilby 的论文中使用的是 PNP 开关管、而如今主流的则多是使用 NPN,或者在今天更多的则是使用 MOS 管、或直接使用放大器作为核心放大部分。 不过具体使用什么核心器件进行放大,本质上都是相似的。我想只要对其中一个细致深入的学习明白,其他的相似电路也就能够较快掌握了。所以接下来,我将对这个电路进行更详细的研究、学习。