使用ε-M极限证明问题一则
为什么? 直观上的感觉是,x趋于无限大,它的导数便趋于0,于是也便趋于0,最终的极限结果就是0了。这似乎很简单。但如果基于数学分析的角度而言,这每一步的理所当然,都需要经过证明,所以对于数学分析而言,这个简单的极限的推导过程,并不轻松,而是要啰里啰唆的说上一大堆,才敢给出结论来的。 它大体上分为两步:1、首先证明;2、然后利用连续函数的复合法则,完成复合函数求极限。以下是每一步的细节: 一、首先使用语言证明: 《普》中并未給出的證明、甚至都沒有提到這一事實,它似乎是默認讀者知道且相信這一極限的結果。這個簡單的極限從直觀上也確實一目瞭然,但是在更嚴謹的數學教材中,其實是會通過語言對它進行證明的。語言和語言相似,都是極限論證語言。使用语言完成证明的过程如下: 1、首先观察原始的题目,并且将原始题目调整一下写法:; 2、这个新的写法不再使用“等号”,从而表达式的意思变成了:当自变量x趋于无限大时,结果(因变量)将趋于0。调整成这样的表达之后,假设这个结论是成立的,那么它将意味着计算的结果与它所趋近于的数值0之间,是存在着一个距离的,而且这个距离可以表达出来,将这个距离表达为:; 3、此时 的含义就是“距离”,并且是 与 之间的距离。我们要证明的是,这个距离 可以任意的小、随意的小,想要多小就多小。换言之,假设 的确可以任意的小能够实现,意味着 与 可以无限接近,便可以将 视为 了; 4、现在直接大胆的提出:当任意指定时,自变量 时,的结果就比还要小。能否找到这个大胆的想法中的M呢?显然是可以的,通过不等式简单的变换,就能确定,也就是说自变量 时的所有x取值,都可以满足 的结果比还要小; 5、至此就可以得出结论:无论怎样小的 指定,都有 M 范围选择点可明确出来。因而可以实现,并且认为。此时的表达式便是:。(这里似乎还缺少对下标 的展开推导)。 二、连续函数的极限连续性:…
两道极限计算的简单题目
两道题目如下: 1、计算: 2、求证: 一、计算: 解法1:极限定理法 当x趋于无穷时:分子是个正弦反复跳跃、极限不存在;分母x趋于无穷、极限也不存在。因而分子和分母都没有明确的极限值的情况下,无法用商的极限运算法则进行计算。 考虑使用乘积的极限运算法则进行计算:。 分解出来的两个因式的结果分别是有界函数和无穷小,他们的乘积等于0。 解法2:三明治法 因为,所以 左边有: 右边有: 不等式两端在x趋于无穷时,同时趋于0,所以中间的极限 二、证明: 这个证明比较难、甚至是非常难。虽然在《高等数学》和《普林斯顿微积分读本》的开始、最基础的章节中就有这个重要极限的介绍、以及证明。但实际上这两本书都故意忽略了一个基础极限:。 在《高等数学》§1.7中,这里几乎是“一笔带过”假装“显而易见”糊弄过去了;在《普林斯顿》§7.1.5中则是给出了上面的结论而也语焉不详的糊弄过去的。 两本书用的证明方法相同、也都忽略了上面提到的基础,我也先忽略、假装是个事实,完成证明:基本思想依然是利用三明治定理,设法找到两边的函数,通过两边的极限,夹近出的结果。 构建如上图形,其中圆为单位圆、半径,可以看出:,这个不等式的左中右分别为: 左侧: 中间: 右侧: 带入不等式,得到:, 将这个不等式各个部分除以并颠倒分子和分母、简单整理之后得到: 左侧:,注意这里是“假装显而易见先糊弄过去”; 右侧:, 通过三明治定理,即可夹近出中间的极限:。 注意上面的三明治极限都是取的,这是因为原式中的分母不能取0点,因而要分别求它的左极限和右极限,上面只是在计算右极限。相应的进行符号斟酌、调整,可以再求出左极限:。…