沃利斯曾经解决过的几道积分问题
在斯科特撰写的《数学史》一书中,P148页有一段简单的描述:沃里斯曾仿照卡佛来利的方法解决了纵坐标由的求积问题。 书上给出了如下若干积分及计算结果: 1、 2、 3、 4、 上面这4道题看起来还都是比较容易的,即便是第4题,只是计算量略微繁琐,但只要通过分部积分的方法,依然可以轻松得到答案。下面仅以第3题为例动笔跟着练习一下: 题目:计算 首先将多项式展开,然后利用分部积分法,对每一个简单积分进行求解,最终求和: 之所以使用第3题练笔,原因是后面的第4题如果如上方法推导的话,展开项更多,繁琐、浪费笔墨、且容易出错。但假设问题更复杂一点,例如想计算,恐怕就不再是“有一点繁琐”,而是会非常繁琐、几乎无法完成的事情了。 所以上面一系列相似的问题,还是应该再找一找更为通用、便捷的工具进行计算。自然而然的想到了利用换元法进行计算。以上面第4题为例尝试一下改用换元法完成计算吧: 考虑到积分范围是从0到1,计算式中又明显能够感受到毕达哥拉斯的味道,因而尝试对进行换元:。 换元准备1:重新调整积分上下限: 换元准备2:计算式换元: 换元准备3:微分项还原: 通过以上准备,最终完成换元: 至此问题得到了简化,能够看出最终的换元结果成为了B函数形态,将B函数原形写出来,目的是计算出B函数参数式: 即通过:, 可得到: 指明参数的B函数是: 使用转换: 最终得到Gamma函数: 其中,, 将以上三项计算结果带回Gamma计算式,得到最终结果 附:沃里斯简介 约翰·沃里斯(John Wallis,1616-1703)是17世纪英国著名的数学家、逻辑学家,也是剑桥大学三一学院的毕业生,后来成为牛津大学的萨维尔几何学教授。沃里斯在数学、物理学、密码学等多个领域做出了重要贡献,对微积分的早期发展也产生了深远影响。
两道极限计算的简单题目
两道题目如下: 1、计算: 2、求证: 一、计算: 解法1:极限定理法 当x趋于无穷时:分子是个正弦反复跳跃、极限不存在;分母x趋于无穷、极限也不存在。因而分子和分母都没有明确的极限值的情况下,无法用商的极限运算法则进行计算。 考虑使用乘积的极限运算法则进行计算:。 分解出来的两个因式的结果分别是有界函数和无穷小,他们的乘积等于0。 解法2:三明治法 因为,所以 左边有: 右边有: 不等式两端在x趋于无穷时,同时趋于0,所以中间的极限 二、证明: 这个证明比较难、甚至是非常难。虽然在《高等数学》和《普林斯顿微积分读本》的开始、最基础的章节中就有这个重要极限的介绍、以及证明。但实际上这两本书都故意忽略了一个基础极限:。 在《高等数学》§1.7中,这里几乎是“一笔带过”假装“显而易见”糊弄过去了;在《普林斯顿》§7.1.5中则是给出了上面的结论而也语焉不详的糊弄过去的。 两本书用的证明方法相同、也都忽略了上面提到的基础,我也先忽略、假装是个事实,完成证明:基本思想依然是利用三明治定理,设法找到两边的函数,通过两边的极限,夹近出的结果。 构建如上图形,其中圆为单位圆、半径,可以看出:,这个不等式的左中右分别为: 左侧: 中间: 右侧: 带入不等式,得到:, 将这个不等式各个部分除以并颠倒分子和分母、简单整理之后得到: 左侧:,注意这里是“假装显而易见先糊弄过去”; 右侧:, 通过三明治定理,即可夹近出中间的极限:。 注意上面的三明治极限都是取的,这是因为原式中的分母不能取0点,因而要分别求它的左极限和右极限,上面只是在计算右极限。相应的进行符号斟酌、调整,可以再求出左极限:。…